1,379 research outputs found

    Interpolation and scattered data fitting on manifolds using projected Powell–Sabin splines

    Get PDF
    We present methods for either interpolating data or for fitting scattered data on a two-dimensional smooth manifold. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of a family of charts {(Uξ , ξ)}ξ∈ satisfying certain conditions of smooth dependence on ξ. If is a C2-manifold embedded into R3, then projections into tangent planes can be employed. The data fitting method is a two-stage method. We prove that the resulting function on the manifold is continuously differentiable, and establish error bounds for both methods for the case when the data are generated by a smooth function

    Scattered data fitting by direct extension of local polynomials to bivariate splines

    Get PDF
    We present a new scattered data fitting method, where local approximating polynomials are directly extended to smooth (C 1 or C 2) splines on a uniform triangulation (the four-directional mesh). The method is based on designing appropriate minimal determining sets consisting of whole triangles of domain points for a uniformly distributed subset of . This construction allows to use discrete polynomial least squares approximations to the local portions of the data directly as parts of the approximating spline. The remaining Bernstein-Bæ#169;zier coefficients are efficiently computed by extension, i.e., using the smoothness conditions. To obtain high quality local polynomial approximations even for difficult point constellations (e.g., with voids, clusters, tracks), we adaptively choose the polynomial degrees by controlling the smallest singular value of the local collocation matrices. The computational complexity of the method grows linearly with the number of data points, which facilitates its application to large data sets. Numerical tests involving standard benchmarks as well as real world scattered data sets illustrate the approximation power of the method, its efficiency and ability to produce surfaces of high visual quality, to deal with noisy data, and to be used for surface compression

    An error analysis of probabilistic fibre tracking methods: average curves optimization

    Get PDF
    Fibre tractography using diffusion tensor imaging is a promising method for estimating the pathways of white matter tracts in the human brain. The success of fibre tracking methods ultimately depends upon the accuracy of the fibre tracking algorithms and the quality of the data. Uncertainty and its representation have an important role to play in fibre tractography methods to infer useful information from real world noisy diffusion weighted data. Probabilistic fibre tracking approaches have received considerable interest recently for resolving orientational uncertainties. In this study, an average curves approach was used to investigate the impact of SNR and tensor field geometry on the accuracy of three different types of probabilistic tracking algorithms. The accuracy was assessed using simulated data and a range of tract geometries. The average curves representations were employed to represent the optimal fibre path of probabilistic tracking curves. The results are compared with streamline tracking on both simulated and in vivo data

    Cubic spline prewavelets on the four-directional mesh

    Get PDF
    In this paper, we design differentiable, two dimensional, piecewise polynomial cubic prewavelets of particularly small compact support. They are given in closed form, and provide stable, orthogonal decompositions of L^2(\RR^2). In particular, the splines we use in our prewavelet constructions give rise to stable bases of spline spaces that contain all cubic polynomials, whereas the more familiar box spline constructions cannot reproduce all cubic polynomials, unless resorting to a box spline of higher polynomial degree

    Bivariate spline interpolation with optimal approximation order

    Get PDF
    Let be a triangulation of some polygonal domain f c R2 and let S9 (A) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to A. We develop the first Hermite-type interpolation scheme for S9 (A), q >_ 3r + 2, whose approximation error is bounded above by Kh4+i, where h is the maximal diameter of the triangles in A, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and nearsingular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sr, (A). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [71 and [181

    C2 piecewise cubic quasi-interpolants on a 6-direction mesh

    Get PDF
    We study two kinds of quasi-interpolants (abbr. QI) in the space of C2 piecewise cubics in the plane, or in a rectangular domain, endowed with the highly symmetric triangulation generated by a uniform 6-direction mesh. It has been proved recently that this space is generated by the integer translates of two multi-box splines. One kind of QIs is of differential type and the other of discrete type. As those QIs are exact on the space of cubic polynomials, their approximation order is 4 for sufficiently smooth functions. In addition, they exhibit nice superconvergent properties at some specific points. Moreover, the infinite norms of the discrete QIs being small, they give excellent approximations of a smooth function and of its first order partial derivatives. The approximation properties of the QIs are illustrated by numerical examples

    On variables with few occurrences in conjunctive normal forms

    Full text link
    We consider the question of the existence of variables with few occurrences in boolean conjunctive normal forms (clause-sets). Let mvd(F) for a clause-set F denote the minimal variable-degree, the minimum of the number of occurrences of variables. Our main result is an upper bound mvd(F) <= nM(surp(F)) <= surp(F) + 1 + log_2(surp(F)) for lean clause-sets F in dependency on the surplus surp(F). - Lean clause-sets, defined as having no non-trivial autarkies, generalise minimally unsatisfiable clause-sets. - For the surplus we have surp(F) <= delta(F) = c(F) - n(F), using the deficiency delta(F) of clause-sets, the difference between the number of clauses and the number of variables. - nM(k) is the k-th "non-Mersenne" number, skipping in the sequence of natural numbers all numbers of the form 2^n - 1. We conjecture that this bound is nearly precise for minimally unsatisfiable clause-sets. As an application of the upper bound we obtain that (arbitrary!) clause-sets F with mvd(F) > nM(surp(F)) must have a non-trivial autarky (so clauses can be removed satisfiability-equivalently by an assignment satisfying some clauses and not touching the other clauses). It is open whether such an autarky can be found in polynomial time. As a future application we discuss the classification of minimally unsatisfiable clause-sets depending on the deficiency.Comment: 14 pages. Revision contains more explanations, and more information regarding the sharpness of the boun

    A finite element method for fully nonlinear elliptic problems

    Get PDF
    We present a continuous finite element method for some examples of fully nonlinear elliptic equation. A key tool is the discretisation proposed in Lakkis & Pryer (2011, SISC) allowing us to work directly on the strong form of a linear PDE. An added benefit to making use of this discretisation method is that a recovered (finite element) Hessian is a biproduct of the solution process. We build on the linear basis and ultimately construct two different methodologies for the solution of second order fully nonlinear PDEs. Benchmark numerical results illustrate the convergence properties of the scheme for some test problems including the Monge-Amp\`ere equation and Pucci's equation.Comment: 22 pages, 31 figure

    Stable splitting of bivariate spline spaces by Bernstein-Bézier methods

    Get PDF
    We develop stable splitting of the minimal determining sets for the spaces of bivariate C1 splines on triangulations, including a modified Argyris space, Clough-Tocher, Powell-Sabin and quadrilateral macro-element spaces. This leads to the stable splitting of the corresponding bases as required in Böhmer's method for solving fully nonlinear elliptic PDEs on polygonal domains

    Does creativity belong to traditional values?

    Full text link
    Different definitions of tradition may include the concept of creativity or ignore it as unimportant. Comparing opinions of N. A. Berdyaev and I. A. Ilyin we reduce the problem to attraction of freedom and tragedy. Even as a part of postmodern collage, tradition keeps a possibility to be a personal tragedy of an individualРазличные определения традиции могут включать понятие творчества или игнорировать его как вторичное. Сопоставление позиций Н. А. Бердяева и И. А. Ильина побуждает интерпретировать творчество как трагедию и свободу. В обществе постмодерна традиция неизбежно становится частью коллажа, однако сохраняет возможность быть личной трагедией индивид
    corecore